![]() |
|||
Product Design | My Artwork | Living Sustainably | |
Art Engineering | Tool Holder | Solar Power | Chevy Volt |
Solar Heating | Thermal Windows | ||
Contact | About Me | Solar Hot Water | Solar Mower |
home>HRV
SUSTAINABLE
LIVING
Installing a Heat Recovery Ventilation system
in my workshop
October 5, 2008 |
![]() This year I have been gaining an education in building science that has led me to understand that average homes need to have a minimum of 1/3 of the building air exchanged every hour at minimum for good air quality (according to the complex guidelines put out by ASHRAE). I learned this from Kurt Johnson of Fresh Air Ventilation Systems in Lewiston, Maine when he presented a very informative lecture on ventilation systems for the Midcoast Green Collaborative. According to Kurt: "I think it is reasonable to consider a rate of 1 air change per hour mechanically which would be a more likely rate that would provide optimum health and air quality. What I would say about ASHRAE is that it is better to have a standard of some ventilation than to have no standard. I personally would not consider this a rate for optimum health and air quality." Most houses leak enough that they see at least one full air exchange per day and older houses much more (at the cost of a lot of wasted heat). So I have paid the price for sealing up my building too well -- now I have stuffy uncirculated air that can be unhealthy. This is particularly noticeable in my 2nd floor office with only one (sealed) window and one interior door. The heat for this 11 by 18 foot room is a 10ft. baseboard radiator, which is occasionally supplemented by a 1kW electric heater. The only air that is forcibly removed from the building is drawn out by the 100CFM exhaust vent of the propane backup heater for my solar heating system at the far end of my building from my office. This can run from 4 to 12 or more hours a day in the dead of winter when it is cloudy. I have wondered where the incoming air comes from. Another issue is the poor draw of my wood stove, when the vent is running I often get a back draft that forces me to open the door to start a fire. Once the fire gets going I can close the door but at the cost of a lot of heat loss and subsequent poor draft. (The wood stove was added as a backup to the solar/propane heating system to reduce propane usage during extended overcast days.) |
|
DISCLAIMER! The heat recovery system presented here is a budget system designed primarily to get fresh air into my small 200sq ft office. I am aware that as a do-it-yourselfer I may not have designed an optimal system. I am sharing what I have done for educational purposes. I strongly suggest that if you are interested in installing a HRV in your home that you contact a qualified professional that can engineer a system that is optimized for your specific needs. |
|
![]() If I run the unit 6 hours/day at the 52 Watt setting that comes to 9.36 KWH per month. We are paying 15 cents/KW her in Maine, so my monthly cost to operate the HRV will be about $1.40 But there is the extra cost to make up the lost heat to consider too, so I will be using slightly more propane and firewood. |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
The HRV unit has 2 options that address
defrosting the core in cold weather. The first is an internal
method, to quote the manual: "The thermostat inside the unit will
protect the unit from freezing up under very cold outside conditions.
The thermostat is pre-set at the factory to stop the operation when
fresh air to the house cannot be held above approximately 45F (7C).
When the temperature in your home is 70F (21C) the frost protection can
normally be expected to activate at an outside temperature of 0F (-18C)
or lower." Since we routinely see temperatures below 0F in
the winter. I expect that this feature will be needed.![]() ![]() ![]() |
I left the HRV running on low speed and used my data logger to document a 24 hour
cycle on October 18-19, 2008 as the outside temperature dipped down to
freezing. I placed the 4 sensors right inside the unit. The
HRV output only dropped to 59F as it used the outgoing heat from the
building to raise the incoming air temperature by 27F in the
coldest part of the morning. Based on the data I have decided to try running the HRV on half speed (52 Watts) from 10:00am to 4:00pm - the warmest times of the day. Running it in the dead of winter when the temperatures here in Maine often remain below 10F at night does not seem wise! This timer strategy will cost me under $2.00/month at my electric rates. ![]() |
October 2011 update - see below Installed real-time temperature monitoring system. |
October 2014 update When I recently installed a single room energy recovery ventilator in the dining room of our house, it came with a special feature that allows it to respond to ambient light in the room and switch to its lowest speed at night when it is dark. This got me to thinking because I find myself adjusting the programming of the timer that switches on my HRV to correct for changing daylight hours. It really makes sense to only operate the HRV when it is light outside and therefore warmer. Also, these are the hours that I am in my office. Being an electrical engineer, I realized that I could build a device that would turn on the HRV only when the ambient light in my utility room is bright. The room has a south facing window so it gets sun very early in the morning as soon as the sun rises. |
I
designed a simple circuit that uses a small photocell to detect ambient
light from the adjacent window,![]() Now my HRV only operates from dawn to dusk automagically! |